Analysis of the psicometric properties of a multiplication and division processes assessment scale

Contenido principal del artículo

Yazna Cisternas Rojas
Mª Dolores Gil Lario
Roberta Ceccato
Mª Isabel Marí Sanmillán

Resumen

The domain of multiplication and division operations depends on both algorithm management
and the ability to identify the semantic structure of the problem and to translate it into mathematical language. Many students present difficulties in identifying the semantic structure of the problem but not applying the algorithm when the problem is presented numericaly. The aim of the study is to validate an assessment tool of the processes involved in multiplication and division problems solving in order to identify the causes of mistakes. The administration to 368 ten-to-twelve yearsold children highlighted a three-factor structure of the test: a factor composed of tasks that require just the domain of the algorithm, a second one that demand the identification of the operation, and a third one requiring both processes. The reliability of the instrument has been satisfactory and a qualitative analysis of the responses to the error detection and correction is proposed.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Cisternas Rojas, Y., Gil Lario, M. D., Ceccato, R., & Marí Sanmillán, M. I. (2019). Analysis of the psicometric properties of a multiplication and division processes assessment scale. Revista INFAD De Psicología. International Journal of Developmental and Educational Psychology., 3(1), 159–166. https://doi.org/10.17060/ijodaep.2019.n1.v3.1464
Sección
Artículos
Biografía del autor/a

Mª Dolores Gil Lario, University of Valencia. General Studi

Department of Evolutionary Psychology and Education
University of Valencia. General Studi

Roberta Ceccato, Universidad de Extremadura

Profesora Departamento de Psicología y Antropología

Facultad de Educación
Universidad de Extremadura

Mª Isabel Marí Sanmillán, CEU Cardenal Herrera University. Castellón

Department of Education Sciences. CEU Cardenal Herrera University. Castellón

Citas

Ayyildiz, N. & Altun, S. (2013). An Investigacion of the effect of learning logs on remedying students’ misconceptions concerning mathematics lesson. H.U. Journal of education, 28 (2), 71-86.

Biber, C., Tuna, A. & Korkmaz, S. (2013). The mistakes and the misconceptions of the eigth grade students on the subject of angles. European Journal of Science and Mathematics Education, 1 (2), 50-59.

Burton, M. (2010). Five strategies for creating meaningful mathematics experiences in the primary years. YC Young Children, 65 (6), 92-96.

Cárdenas, J., Blanco, L., Gómez, R. & Guerrero, E. (2012). Resolución de Problemas de Matemática y Evaluación: Aspectos afectivos y cognitivos. En V. Mellado, L. Blanco, A. Borrachero, & J.Cárdenas, Las Emociones en la Enseñanza y Aprendizaje de las Ciencias y las Matemáticas, 67-88. Badajoz: DEPROFE.

Cueli, M., García, T. & González-Castro, P. (2013). Autorregulación y rendimiento académico en Matemáticas. Aula Abierta, 41 (1), 39-48.

Dehaene, S. (2001). Precis of “the number sense.” Mind and Language, 16, 16–32.

Ding, M., Li, X. & Capraro, M. (2013). Preservice elementary teachers knowledge for teaching the associative property of multiplication: a preliminary analysis. Journal of Mathematical Behavior. 32, 36-52.

González-Pienda, J., Fernández, S., Suarez, N., María, F., Tuero, E., García, T. & de Silva, E. (2012). Diferencias de género en actitudes hacia las matemáticas en la enseñanza obligatoria. Revista Iberoamericana de Psicología y Salud, 3(1), 55-73.

Isoda, M. & Olfos, R. (2011). Enseñanza de la multiplicación: Desde el estudio de Clases japonés a las propuestas Iberoamericanas. Valparaíso: Ediciones Universitarias de Valparaíso.

Krawec, J. (2012). Problem Representation and Mathematical Problem Solving of Students of Varying Math Ability. Journal of Disabilities, Published online before print March 5, 2012.

Mc Guire, P., Kinzie, M. & Berch, D. (2012). Developing number, sense in Pre-K with five-frames. Early Childhood Educ J, 40, 213-222.

Melis, E. (2004). Erroneous examples as a source of learning in mathematics ejemplos. Cognición y Aprendizaje exploratorio en la Era Digital CELDA, 311-318.

Montague, M. (2008). Self-regulation strategies to improve mathematical problem solving for students with learning disabilities. Learning Disabilities Quarterly, 31, 38-44.

Nelson, J. & Harwood, H. (2011). Learning disabilities and anxiety: A meta-analysis. Journal of learning disabilities, 44(1), 3-17.

Oliva, M., Rodríguez, P., Enesco, I., Jiménez, L. & Dopico, C. (2008). Me sobran cuatro y no sé qué hacer con ellos. Un estudio sobre los problemas de división con resto en alumnos de 1° de ESO. Anales de Psicología, 24(2), 201-212.

Pope, K. (2012). Misunderstanding Misconceptions. Science Scope, 12-15

Sbaragli, S. & Santi, G. (2011). Teacher’s choices as the cause of misconceptions in the learning the concept of angle. Jornal International de Estudios en Educación Matemática, 117-157.

Schneider, M. & Grabner, R. (2009). Mental Number Line, Number Line Estimation, and Mathematical Achievement: Their Interrelations in Grades 5 and 6. Journal of Educational Psychology, 101(2), 359–372

Sözen, M. & Bolat, M. (2011). Determining the misconceptions of primary school students related. Procedia-Social and Behavorial Sciences, 1060-1066.

Steinle, V. (2004). Detection and remediation of decimal miconceptions. Towards excellence in mathematics, 460-478.

Villarroel, V. (2012). Errores y aciertos comunes de estudiantes chilenos en las preguntas de la Prueba Pisa 2009. Santiago: MINEDUC.

Watson, J. (2012). Preservice Mathematics Teachers Understanding of Sampling: Intuition or Mathematics. Mathematics Teacher Education and Development, 2, 121-135.

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.