Early risk indicators (0-36 months) of autism spectrum disorder. A review of the literature
Main Article Content
Abstract
The prevalence of the autism spectrum disorder (ASD) has increased significantly in the recent years mainly due to an increase in the knowledge of the professionals responsible of its identification and/or diagnosis.
The objective of the current study is to review the articles published in 2018 that have attempted to identify reliable predictors (between 0 and 36 months of life) of the subsequent onset of ASD.
A search was conducted in PsycInfo in which 8 empirical studies designed to assess the predictive power of these early indicators were found.
In these studies were identified different symptoms that are considered reliable predictors of the subsequent diagnosis of ASD, such as the existence of differences in the sensory profile compared to children without ASD, the visual perception of social stimuli and differences in the ability of directing the attention and the acquisition of fine motor skills.
Downloads
Article Details
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
References
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association.
*Baranek, G. T., Woynaroski, T. G., Nowell, S., Turner-Brown, L., DuBay, M., Crais, E. R., & Watson, L. R. (2018). Cascading effects of attention disengagement and sensory seeking on social symptoms in a community sample of infants at-risk for a future diagnosis of autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 30-40. doi: 10.1016/j.dcn.2017.08.006
Chen, M., Su, T., Chen, Y., Hsu, J., Huang, K., Chang, W., . . . Bai, Y. (2014). Is atopy in early childhood a risk factor for ADHD and ASD? A longitudinal study. Journal of Psychosomatic Research, 77(4), 316-321. doi: 10.1016/j.jpsychores.2014.06.006
*Cheung, C. H. M., Bedford, R., Johnson, M. H., Charman, T., & Gliga, T. (2018). Visual search performance in infants associates with later ASD diagnosis. Developmental Cognitive Neuroscience, 29, 4-10. doi: 10.1016/j.dcn.2016.09.003
*Choi, B., Leech, K. A., Tager-Flusberg, H., & Nelson, C. A. (2018). Development of fine motor skills is associated with expressive language outcomes in infants at high and low risk for autism spectrum disorder. Journal of Neurodevelopmental Disorders, 10(1), 14. doi: 10.1186/s11689-018-9231-3
*Damiano-Goodwin, C. R., Woynaroski, T. G., Simon, D. M., Ibañez, L. V., Murias, M., Kirby, A., ... & Cascio, C. J. (2018). Developmental sequelae and neurophysiologic substrates of sensory seeking in infant siblings of children with autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 41-53. doi: 10.1016/j.dcn.2017.08.005
*Davidovitch, M., Stein, N., Koren, G., & Friedman, B. C. (2018). Deviations from Typical Developmental Trajectories Detectable at 9 Months of Age in Low Risk Children Later Diagnosed with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48, 2854–2869. doi: 10.1007/s10803-018-3549-2
*Falck‐Ytter, T., Nyström, P., Gredebäck, G., Gliga, T., Bölte, S. and EASE Team, (2018). Reduced orienting to audiovisual synchrony in infancy predicts autism diagnosis at 3 years of age. Journal of Child Psychology and Psychiatry, 59(8), 872-880. doi:10.1111/jcpp.12863
Focaroli, V., Taffoni, F., Parsons, S. M., Keller, F., & Iverson, J. M. (2016). Performance of motor sequences in children at heightened vs. low risk for ASD: A longitudinal study from 18 to 36 months of age. Frontiers in Psychology, 7, 9. Recuperado:https://search.proquest.com/docview/1819919755?accountid=14777
Gerow, S., Hagan-Burke, S., Rispoli, M., Gregori, E., Mason, R., y Ninci, J. (2018). A systematic review of parent-implemented functional communication training for children with ASD. Behavior modification, 42(3), 335-363. DOI:10.1177 / 0145445517740872
Hansen, S. N., Schendel, D. E., & Parner, E. T. (2015). Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA pediatrics, 169(1), 56-62. doi:10.1001/jamapediatrics.2014.1893
*Hendry, A., Jones, E. J., Bedford, R., Gliga, T., Charman, T., & Johnson, M. H. (2018). Developmental change in look durations predicts later effortful control in toddlers at familial risk for ASD. Journal of Neurodevelopmental Disorders, 10(1), 3. doi: 10.1186/s11689-017-9219-4
*Jones, E. J. H., Dawson, G., & Webb, S. J. (2018). Sensory hypersensitivity predicts enhanced attention capture by faces in the early development of ASD. Developmental Cognitive Neuroscience, 29, 11-20. doi: 10.1016/j.dcn.2017.04.001
Makrygianni, M. K., Gena, A., Katoudi, S., y Galanis, P. (2018). The effectiveness of applied behavior analytic interventions for children with Autism Spectrum Disorder: A meta-analytic study. Research in Autism Spectrum Disorders, 51, 18-31. https://doi.org/10.1016/j.rasd.2018.03.006
McGill, RJ., Baker, D., & Busse, R. T. (2015). Social Story interventions for decreasing challenging behaviours: a singlecase meta-analysis 1995–2012. Educational Psychology in Practice, 31(1), 21-42. doi.org/10.1080/02667363.2014.975785
Murza, K. A., Schwartz, J. B., Hahs‐Vaughn, D. L., y Nye, C. (2016). Joint attention interventions for children with autism spectrum disorder: a systematic review and meta‐analysis. International Journal of Language & Communication Disorders, 51(3), 236-251. Doi: 10.1111 / 1460-6984.12212
Parsons, L., Cordier, R., Munro, N., Joosten, A., y Speyer, R. (2017). A systematic review of pragmatic language interventions for children with autism spectrum disorder. PloSOne, 12(4), e0172242. doi.org/10.1371/journal.pone.0172242
Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The familial risk of autism. Jama, 311(17), 1770-1777. doi: 10.1001/jama.2014.4144
Reznick, J. S., Baranek, G. T., Reavis, S., Watson, L. R., & Crais, E. R. (2007). A parent-report instrument for identifying one-year-olds at risk for an eventual diagnosis of autism: the first year inventory. Journal of Autism and Developmental Disorders, 37(9), 1691-1710. doi: 10.1007/s10803-006-0303-y
Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular psychiatry, 17(4), 389. doi: doi:10.1038/mp.2011.165
Sanz-Cervera, P., Fernández-Andrés, M. I., Pastor-Cerezuela, G. y Tárraga-Mínguez, R. (2018). Efectividad de las intervenciones basadas en metodología TEACCH en el trastorno del espectro autista: un estudio de revisión. Papeles del Psicólogo, 39(1), 40-50. doi.org/10.23923/pap.psicol2018.2851
Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., ... & Pierce, K. (2015). Early intervention for children with autism spectrum disorder under 3 years of age: recommendations for practice and research. Pediatrics, 136(Supplement 1), S60-S81. doi: 10.1542 / peds.2014-3667E