An app designed for early mathematics training. The number line estimation

Main Article Content

Carlos Mera Cantillo
Gonzalo Ruiz Cagigas
José Ignacio Navarro Guzmán
Belén Román Alegre
Estíbaliz Aragón Mendizábal

Abstract

Currently, we have been hearing from various educational and scientific forums the need to improve students’ mathematical learning. Mathematics is considered one of the most complex topics for comprehension. Math also is the subject presenting lowest grades of our students. Research focused on of mathematical competence development, has highlighted the need to implement early intervention to improve further progress. Likewise, it is necessary to facilitate learning using tools that may be attractive to students, such as the use of new technologies for educational purposes. The use of high tech devices such as tablets or smartphones can approach education in the family environment of our young people. In such a way that children can learn while they are playing at home. In this work,  we present one of the applications (APP) designed for tablet and smartphone, adapted to the different platforms. App is designed and developed for improvement children’s numerical sense. Apps is designed for Early Childhood Education. This APP is is focused on training number line estimation. This skill is one of the main specific mathematics learning precursor. APP is based on cognitive models of numerical learning, and provides the benefits derived from the use of one of the tools used as reinforces by families (tablets and smartphones). This work would contribute to the development of mathematical skills of children aged from 4 to 7 so that they can successfully face the school requirements for maths, solve daily lives features.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mera Cantillo, C., Ruiz Cagigas, G., Navarro Guzmán, J. I., Román Alegre, B., & Aragón Mendizábal, E. (2019). An app designed for early mathematics training. The number line estimation. International Journal of Developmental and Educational Psychology. Revista INFAD De Psicología., 3(1), 133–142. https://doi.org/10.17060/ijodaep.2019.n1.v3.1457
Section
Articles

References

Aragón, E. L. (2014). Estudio de la eficacia del” e-aprendizaje” a través de la implementación de un programa de entrenamiento en matemática temprana (Doctoral dissertation, Universidad de Cádiz).

Aragón, E. L., Navarro, J. I., Aguilar, M., & Cerda, G. (2015). Predictores cognitivos del conocimiento numérico temprano en alumnado de 5 años. Revista de Psicodidáctica, 20 (1). doi: 10.1387/RevPsicodidact.11088

Araújo, A., Aragón, E., Aguilar, M., Navarro, J. I., & Ruiz, G. (2014). Un estudio exploratorio para la adaptación de la versión española revisada del” Early Numeracy Test-R. European Journal of Education and Psychology, 7 (2). doi: 10.1989/ejep.v7i2.181

Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47-89. doi: https://doi.org/10.1016/S0079-7421(08)60452-1

Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged?. Journal of Experimental Child Psychology, 77(2), 128-137. doi: https://doi.org/10.1006/jecp.2000.2592

Aragón, Navarro, J. I., Aguilar, M., & Cerda, G. (2014). Cognitive Predictors of 5-Year-Old Students’ Early Number Sense // Predictores cognitivos del conocimiento numérico temprano en alumnado de 5 años. Revista de Psicodidactica / Journal of Psychodidactics, 20(1), 83-97. https://doi.org/10.1387/RevPsicodidact.11088

Aragón, E. & Ruiz, G. (2015). El software «Jugando con números 2.0» y la adquisición del sentido numérico «Playing with numbers 2.0» software and acquisition of number sense. Revista de Psicología y Educación, 10(2), 95-112.

Araujo, A., Aragon, E., Aguilar, M., Navarro, J. I., & Ruiz, G. (2014). An exploratory study for the standardization of the Spanish version of ``Early Numeracy Test-R{’’} to mathematical learning assessment. European Journal of Education and Psychology, 7(2), 83-93. https://doi.org/10.1989/ejep.v7i2.181

Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/j.apm.2016.02.027

Baddeley, A. D., & Hitch, G. (1974). Working Memory. In Psychology of learning and motivation, 8, 47-89.

Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). Journal of Experimental Child What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency ? Journal of Experimental Child Psychology, 117, 12-28. https://doi.org/10.1016/j.jecp.2013.08.010

Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108(4), 713-733. https://doi.org/10.1016/j.jecp.2010.11.004

Clements, D., & Sarama, J. (2009). Learning Trajectories in Early Mathematics – Sequences of Acquisition and Teaching. Encyclopedia of language and Literacy Development, (December), 1-7.

Costello, S. (2012). My iPad for kids. Indianapolis, indiana. USA: Que. Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to thirdgrade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106(1), 214-229. https://doi.org/10.1037/a0034097

De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278-292. https://doi.org/10.1016/j.jecp.2010.09.003

Denton, K., West, J., & Walston, J. (2003). Reading-Young children’s achievement and classroom experiences: Findings from the condition of education . National Center for Education Statistics.

Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with Mathematics Learning Disabilities in Belgium. Journal of Learning Disabilities, 37(1), 50-61. https://doi.org/10.1177/00222194040370010601

Falloon, G. (2013). Young students using iPads: APP design and content influences on their learning pathways. Computers and Education, 68, 505-521. https://doi.org/10.1016/j.compedu.2013.06.006

Geary, D. C. (2004). Mathematics and Learning Disabilities. Journal of Learning Disabilities, 37(1), 4-15. https://doi.org/10.1177/00222194040370010201

Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and Arithmetical Cognition: A Longitudinal Study of Process and Concept Deficits in Children with Learning Disability. Journal of Experimental Child Psychology, 77(3), 236-263. https://doi.org/10.1006/jecp.2000.2561

Gullick, M. M., Sprute, L. A., & Temple, E. (2011). Individual differences in working memory, nonverbal IQ, and mathematics achievement and brain mechanisms associated with symbolic and nonsymbolic number processing. Learning and Individual Differences, 21(6), 644-654. https://doi.org/10.1016/j.lindif.2010.10.003

Hannula, M. M., Lepola, J., & Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal of Experimental Child Psychology, 107(4), 394-406. https://doi.org/10.1016/j.jecp.2010.06.004

Joensen, J., & Nielsen, H. (2010). More Successful because of Math: Combining a Natural Experiment and a Structural Dynamic Model to Explore the Underlying Channels. Unpublished Working Paper. Recuperado de https://www.economicdynamics.org/meetpapers/2011/paper_995.pdf

Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. https://doi.org/10.1016/j.learninstruc.2012.12.001

Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516-531. https://doi.org/10.1016/j.jecp.2009.03.009

Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Van Loosbroek, E., & Van De Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27(3), 226-236. https://doi.org/10.1177/0734282908330586

Kroesbergen, E. H., van de Rijt, B., & van Luit, J. E. H. (2007). Working Memory and Early Mathematics: Possibilities for Early Identification of Mathematics Learning Disabilities. En International Perspectives (Vol. Vol. 30 No, pp. 1-19). Elsevier. https://doi.org/10.1016/S0735-004X(07)20001-1

Larkin, K., Purpura, D. J., Ganley, C. M., Larkin, K., Sokolowski, H. M., Ansari, D., … Rubinsten, O. (2013). Mathematics Education: Is There an APP For That? Mathematics Education: Yesterday,

today and tomorrow (Proceedings of the 36th annual conference of the Mathematics Education Research Group of Australia), 0(1), 426-433. https://doi.org/10.1016/j.jecp.2013.12.009

Laski, E. V, & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization number line estimation and numerical magnitude comparison. Child Development, 78(6), 1723-1743.

Moeller, K., Fischer, U., Nuerk, H. C., & Cress, U. (2015). Computers in mathematics education - Training the mental number line. Computers in Human Behavior, 48, 597-607. https://doi.org/10.1016/j.chb.2015.01.048

Muñoz, R., Okan, Y., & Garcia-Retamero, R. (2015). Habilidades numéricas y salud: Una revisión crítica. Revista Latinoamericana de Psicologia, 47(2), 111-123. https://doi.org/10.1016/j.rlp.2015.05.002

Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. https://doi.org/10.1016/j.cognition.2009.10.006

Navarro, J.I., Aguilar, M., Marchena, E., Alcalde, C., & García, J. (2010). Assessing early mathematic preschool children. Revista de Educacion, 352(1), 601-615. Recuperado de https://www.scopus.com/inward/record.uri?eid=2s2.077957745702&partnerID=40&md5=2892342efc1e31d94e74965520778bc6

Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., & Ramiro, P. (2011). Operational development and arithmetic knowledge: Piaget’s theory revisited. Revista de Psicodidactica, 16(2), 251-266. Recuperado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856491745&partnerID=40&md5=289a16be6dfc9e861814837f2143cc35

Nayfeld, I., Fuccillo, J., & Greenfield, D. B. (2013). Executive functions in early learning: Extending the relationship between executive functions and school readiness to science. Learning and Individual Differences, 26, 81-88. https://doi.org/10.1016/j.lindif.2013.04.011

Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., & Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36, 550-560. https://doi.org/10.1016/j.ecresq.2016.02.003

Núñez-Peña, M. I., Colomé, À., & Aguilar-Lleyda, D. (2019). Number line estimation in highly mathanxious individuals. British Journal of Psychology, 110(1), 40-59. https://doi.org/10.1111/bjop.12335

OECD. (2016). PISA 2015 Assessment and Analytical Framework. OECD Publishing. https://doi.org/10.1787/9789264255425-en

Purpura, D. J., & Ganley, C. M. (2014). Working memory and language: Skill-specific or domaingeneral relations to mathematics? Journal of Experimental Child Psychology, 122(1), 104-121. https://doi.org/10.1016/j.jecp.2013.12.009

Randstad. (2016, junio 16). Ciencias, tecnología, ingenierías y matemáticas, las áreas con más oportunidades laborales, pp. 1-4. Recuperado de https://www-randstad-es.s3.amazonaws.com/wpcontent/uploads/2016/07/ciencias-tecnologia-ingenierias-y-matematicas-las-areas-con masoportunidades-laborales.pdf

Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395. https://doi.org/10.1016/j.cognition.2006.01.005

Sarama, J., & Clements, D. H. (2009). «Concrete» computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145-150. https://doi.org/10.1111/j.1750-8606.2009.00095.x

Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for Mathematics Achievement? Evidence From a Longitudinal Study. Mind, Brain, and Education, 6(3), 119-128. https://doi.org/10.1111/j.1751-228X.2012.01147.x

Shalev, R., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year follow-up. Developmental Medicine & Child Neurology, 47(2), 121-125. https://doi.org/10.1017/S0012162205000216

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. https://doi.org/10.1111/j.1467-8624.2004.00684.x

Solsona, J., Navarro, J., & Aguilar, M. (2009). La atención mental en el aprendizaje de la lengua escrita. International Journal of Psycology and Psycological Therapy, 9(3), 335-349.

van Viersen, S., Slot, E. M., Kroesbergen, E. H., van’t Noordende, J. E., & Leseman, P. P. M. (2013). The added value of eye-tracking in diagnosing dyscalculia: A case study. Frontiers in Psychology, 4(OCT), 1-13. https://doi.org/10.3389/fpsyg.2013.00679

Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child and Adolescent Psychiatry, 9(SUPPL. 2). https://doi.org/10.1007/s007870070008

Vujic, A. (2017). Switching on or switching off? Everyday computer use as a predictor of sustained attention and cognitive reflection. Computers in Human Behavior, 72, 152-162. https://doi.org/10.1016/j.chb.2017.02.040

Zhu, M., Cai, D., & Leung, A. W. S. (2017). Number line estimation predicts mathematical skills: Difference in grades 2 and 4. Frontiers in Psychology, 8(SEP), 1-8. https://doi.org/10.3389/fpsyg.2017.01576