The Singapore method for the mathematics learning. Approach and concretion of a learning style
Main Article Content
Abstract
The latest mathematics assessment tests, PISA 2015 and TIMMS 2015 have caused a great interest in the Singapore Method of Mathematics Learning. The Singaporecurriculum framework, which hasasalearning center the resolution of mathematical problems and which is developed through four fundamental aspects: the CPA approach (Concrete – Pictorial - Abstract), the spiral curriculum, systematic and perceptual variations and relational understanding. The Singapore Method is based on the ideas of Jerome Bruner, Zoltan Dienes and Richard Skemp. In this work, after presenting the Singapore educational system and the curricular framework, the contributions of these authors and their concretions in the Singapore Method of learning mathematics are studied.
Downloads
Article Details
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
References
Alves, M. (2018). Learning styles in mathematics- A quantitative research on 10th grade portuguese students. Revista Estilos de Aprendizaje, 11(22), 83-108.
Bruner, J.S. (1960). The Process of Education. Harvard University Press, Cambridge, MA.
Bruner, J.S. (2001). El proceso mental en el aprendizaje. Madrid: Ediciones Narcea
Calderón, P. (2014). Precepciones de los y las docentes del primer ciclo básico, sobre la implementación del método Singapur en el Colegio Mario Bertero Cevasco de la Comuna de Isla de Maipo. Tesis Doctoral: Universidad de Chile
Cañadas, M.C. (2007). Descripción y caracterización del razonamiento inductivo utilizado por estudiantes de educación secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas. Tesis Doctoral: Universidad de Granada. Recuperado de: http://digibug.ugr.es/bitstream/10481/1581/1/16737556.pdf
Dienes, Z.P. (1969). Building Up Mathematics. London: Hutchison Education.
Dienes, Z.P. (1978). La matemática moderna en la enseñanza primaria. Barcelona: Teide.
Gibbs, B.C. (2014). Reconfiguring Bruner: Compressing the Spiral Curriculum. Phi Delta Kappan, 95(7), 41-44.
INEE (2016). Resultados del Estudio Internacional de Tendencias en Matemáticas y Ciencias TIMSS 2015. Madrid: Ministerio de Educación, Ciencia y Deporte.
Mariotti, M.A. (2009). Artifacts and signs after a Vygotskian perspective: the role of the teacher”. ZDM: The international journal on Mathematics Education, 41(4), 427-440.
Mosquera, D.R. y Salazar, N.J. (2014). Estilos de aprendizaje:
“Pensamientos e inquietudes de los estudiantes sobre el aprendizaje de las matemáticas”. Revista Estilos de Aprendizaje, 7(13), 2-25.
National Council of Teachers of Mathematics (2003). Principios y estándares para la educación matemática. Sevilla: SAEM Thales
OCDE (2016). Pisa 2015: Resultados clave. Paris: OCDE
Santaolalla, E. (2009). Matemáticas y estilos de aprendizaje. Revista Estilos de Aprendizaje, 4(2), 56-69.
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
Skemp, R. R. (1980). Psicología del aprendizaje de las matemáticas. Madrid: Morata.