Typology of explanations of biology and geology phenomena: an exploratory study in secondary education

Main Article Content

Irene Ortega Giménez
Vicente Sanjosé López

Abstract

The present study examines the quality of explanations provided by secondary school students regarding the effects of vaccines and global warming. A total of 120 students of both genders participated, comprising those from the 7th and 10th years (Compulsory Secondary Education) and the 11th year of the Science-specialised Baccalaureate programme, all from three educational institutions in Valencia, Spain. The task was presented in a neutral manner and without prior information, simply mentioning the phenomenon and asking for an explanation. The students’ written responses were analysed qualitatively and categorised using a model previously proposed in specialised literature, in which causality is a fundamental element of a scientific explanation. The quality of the explanations was lower than expected. Overall, secondary school students either do not consider or do not know how to consider complex causal mechanisms and often fail to include even simple ones in their explanations. Additionally, students did not incorporate scientific laws or major scientific principles in their explanations. No significant differences were observed in the overall quality of explanations across academic levels. These findings highlight the need to carefully address the development of this important skill during science education in secondary schools.

Article Details

Section

Articles

Author Biographies

Irene Ortega Giménez, Universitat de València

Universitat de València

Vicente Sanjosé López, Universitat de València

Universitat de València

How to Cite

Typology of explanations of biology and geology phenomena: an exploratory study in secondary education. (2025). International Journal of Developmental and Educational Psychology. Revista INFAD De Psicología., 1(1), 155-170. https://doi.org/10.17060/ijodaep.2025.n1.v1.2815

References

Alameh, S., & Abd-El-Khalick, F. (2018). Towards a philosophically guided schema for studying scientific explanation in science education. Science & Education , 27(9–10), 831–861. https://doi.org/10.1007/s11191-018-0021-9

Alameh, S., Abd-El-Khalick, F., & Brown, D. (2023). The Nature of Scientific Explanation: Examining the perceptions of the nature, quality, and “goodness” of explanation among college students, science teachers, and scientists. Journal of Research in Science Teaching, 60(1), 100–135. https://doi.org/10.1002/tea.21792

Ariely, M., Nazaretsky, T., & Alexandron, G. (2024). Causal-mechanical explanations in biology: Applying automated assessment for personalized learning in the science classroom. Journal of Research in Science Teaching , 61(8), 1858–1889. https://doi.org/10.1002/tea.21929

Australian Curriculum, Assessment and Reporting Authority. (2015). Entity resources and planned performance. Downloaded from: https://parlinfo.aph.gov.au/parlInfo/search/display/display.w3p;query=Id:%22publications/tabledpapers/107447e0-58a4-4a45-af7d-26c8ac16e812%22

Bell-Basca, B., Grotzer, T. A., Donis, K. & Shaw, S. (2000, abril). Using domino and relational causality to analyze ecosystems: Realizing what goes around comes around. Comunicación presentada en Annual Conference of the National Association for Research in Science Teaching (NARST), Nueva Orleans.

Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education , 95, 639–669. https://doi.org/10.1002/sce.20449

Cheng, M. F., & Brown, D. E. (2015). The role of scientific modeling criteria in advancing students’ explanatory ideas of magnetism. Journal of Research in Science Teaching, 52(8), 1053–1081. https://doi.org/10.1002/tea.21234

Chi, M. T. H., De Leeuw, N., Chiu, M.-H. and Lavancher, C. (1994), Eliciting Self-Explanations Improves Understanding. Cognitive Science , 18, 439-477. https://doi.org/10.1207/s15516709cog1803_3

Crandell, O. M., Lockhart, M. A., & Cooper, M. M. (2020). Arrows on the page are not a good gauge: Evidence for the importance of causal mechanistic explanations about nucleophilic substitution in organic chemistry. Journal of Chemical Education , 97(2), 313-327. https://doi.org/10.1021/acs.jchemed.9b00815

Cutrera, G., Massa, M., y Stipcich, S. (2021). La explicación científica en el aula. Consideraciones didácticas a partir de las explicaciones de los estudiantes. Revista de Enseñanza de la Física , 33(2), 169-178. https://doi.org/10.55767/2451.6007.v33.n2.35199

de Andrade, V., Freire, S., y Baptista, M. (2019). Constructing Scientific Explanations: a System of Analysis for Students’ Explanations. Research in Science Education , 49(3), 787–807. https://doi.org/10.1007/s11165-017-9648-9

Faria, C., Freire, S., Baptista, M., & Galvão, C. (2014). The construction of a reasoned explanation of a health phenomenon: an analysis of competencies mobilized. International Journal of Science Education , 36(9), 1476–1490. https://doi.org/10.1080/09500693.2013.783723

Friedman, M. (1974). Explanation and scientific understanding. The Journal of Philosophy , 71(1), 5–19. https://doi.org/10.2307/2024924

García-Berbén, A. B., Justicia, F., Cano, F., & Pichardo, M. C. (2014). Enfoques de aprendizaje, comprensión lectora y autorregulación: últimos hallazgos. Revista INFAD De Psicología. International Journal of Developmental and Educational Psychology, 4 (1), 255-264. https://doi.org/10.17060/ijodaep.2014.n1.v4.610

Grotzer, T. A. (2003). Learning to understand the forms of causality implicit in scientifically accepted explanations. Studies in Science Education , 39(1), 1–74. https://doi.org/10.1080/03057260308560195

He, P., Zhang, Y., Li, T., Zheng, Y., & Yang, J. (2024). Diagnosing middle school students’ proficiency in constructing scientific explanations with the integration of chemical reactions and patterns: a cognitive diagnostic modeling approach. International Journal of Science Education, 1-28. https://doi.org/10.1080/09500693.2024.2413926

Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science , 15(2), 135–175. https://doi.org/10.1086/286983

Peng He, Yu Zhang, Tingting Li, Yuan Zheng & Jie Yang (13 Oct 2024): Diagnosing middle school students’ proficiency in constructing scientific explanations with the integration of chemical reactions and patterns: a cognitive diagnostic modeling approach, International Journal of Science Education. https://doi.org/10.1080/09500693.2024.2413926

Instituto Colombiano para la Evaluación de la Educación. (2016). Módulo Pensamiento Científico - Saber Pro Versión inicial. www.icfes.gov.co.

Islakhiyah, K., Sutopo, S., & Yulianti, L. (August 2017). Scientific explanation of light through phenomenon-based learning on junior high school student. In Proceedings of the 1st Annual International Conference on Mathematics, Science, and Education (ICoMSE 2017) . Atlantis Press. https://doi.org/10.2991/icomse-17.2018.31

Kang, H., Thompson, J., & Windschitl, M. (2014). Creating opportunities for students to show what they know: the role of scaffolding in assessment tasks. Science Education, 98 (4), 674–704. https://doi.org/10.1002/sce.21123

Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. C. Salmon (Ed.), Minnesota studies in the philosophy of science: Scientific explanation (Vol. 13, pp. 410–499). University of Minnesota Press. https://hdl.handle.net/11299/185687

Laliyo, L. A. R., Utina, R., Husain, R., Umar, M. K., Katili, M. R., & Panigoro, C. (2023). Evaluating students’ ability in constructing scientific explanations on chemical phenomena. Eurasia Journal of Mathematics, Science and Technology Education, 19 (9), 1-21. https://doi.org/10.29333/ejmste/13524

López, I. & Pita, S. (1999). Medidas de concordancia: el índice Kappa. Cuadernos de atención primaria , 6 (4), 223–226.

Madu, B., Ogundeji, O. & Okoye, N. (2020). Scientific explanation of phenomenon, imagination and concept formation as correlates of student’s understanding of physics concepts. Journal of Natural Sciences Research, 11 (16), 17-28. DOI: 10.7176/JNSR/11-16-03

McLure, F. (2023). The Thinking Frames Approach: Improving high school student’s written explanations of phenomena in science. Research in Science Education, 53 , 173-191. https://doi.org/10.1007/s11165-022-10052-y

McNeill, K. L., & Krajcik, J. (April 2006). Supporting students’ construction of scientific explanation through generic versus context-specific written scaffolds. In annual meeting of the American educational research association, San Francisco.

Ministerio de Educación de Brasil (2018). Ley 9394 directrices y bases de la educación nacional.

National Academies of Sciences Engineering and Medicine (2013). Next Generation Science Standards: For States, By States. The National Academies Press. https://doi.org/10.17226/18290

National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academies Press. https://doi.org/10.17226/13165

OCDE (2019). PISA 2018. Assessment and Analytical Framework . OECD Publishing. https://doi.org/10.1787/b25efab8-en

Osborne, J. & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education , 95 , 627–638. https://doi.org/10.1002/sce.20438

Papadouris, N., Vokos, S., & Constantinou, C. P. (2018). The pursuit of a “better” explanation as an organizing framework for science teaching and learning. Science Education, 102 (2), 219–237. https://doi.org/10.1002/sce.21326

Parnafes, O. (2012). Developing explanations and developing understanding: students explain the phases of the moon using visual representations. Cognition and Instruction, 30 , 359–403. https://doi.org/10.1080/07370008.2012.716885

Perkins, D. N., & Grotzer, T. A. (2005). Dimensions of causal understanding: the role of complex causal models in students’ understanding of science. Studies in Science Education, 41 (1), 117–165. https://doi.org/10.1080/03057260508560216

Prain, V., Tytler, R. & Peterson, S. (2009). Multiple representation in learning about evaporation, International. Journal of Science Education , 31 (6), 787–808. https://doi.org/10.1080/09500690701824249

Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas en la Educación Secundaria Obligatoria. Boletín Oficial del Estado, 76 , de 30 de marzo de 2022. https://www.boe.es/eli/es/rd/2022/03/29/217/con

Salmon, W. C. (1989). Four decades of scientific explanation. University of Minnesota Press.

Seepootorn, A. (2023). Development of scientific explanation ability of eleventh-grade students through science drama-based learning. Kasetsart Journal of Social Sciences, 44 (4), 1135-1146. https://doi.org/10.34044/j.kjss.2023.44.4.1

Solbes, J., Ruiz, J.J. y Furió, C. (2010). Debates y argumentación en las clases de física y química. Alambique: Didáctica de las Ciencias Experimentales , 63 , 65–75.

Sutton, C. (1997). Ideas sobre la ciencia e ideas sobre el lenguaje. Alambique, 12 , 8-32.

Taber, K. S., & García-Franco, A. (2010). Learning processes in chemistry: drawing upon cognitive resources to learn about the particulate structure of matter. Journal of the Learning Sciences , 19(1), 99–142. https://doi.org/10.1080/10508400903452868

Walker, C. M., Lombrozo, T., Williams, J. J., Rafferty, A. N., & Gopnik, A. (2017). Explaining Constrains Causal Learning in Childhood. Child Development , 88 (1), 229–246. https://doi.org/10.1111/cdev.12590

Yao, J. X., Guo, Y. Y. & Neumann, K. (2016). Towards a hypothetical learning progression of scientific explanation. Asia-Pacific Science Education, 2 (4), 1–17. https://doi.org/10.1186/s41029-016-0011-7

Yeo, J., & Gilbert, J. K. (2014). Constructing a scientific explanation: a narrative account. International Journal of Science Education , 36 (11), 1902–1935. https://doi.org/10.1080/09500693.2014.880527

Zangori, L., Forbes, C. T., & Schwarz, C. V. (2015). Exploring the effect of embedded scaffolding within curricular tasks on third-grade students’ model-based explanations about hydrologic cycling. Science & Education , 24 , 957–981. https://doi.org/10.1007/s11191-015-9771-9

Zohar, A., & Tamir, P. (1991). Assessing students’ difficulties in causal reasoning in biology—a diagnostic instrument. Journal of Biological Education , 25 (4), 302–307. https://doi.org/10.1080/00219266.1991.9655229

Zuzovsky, R. & Tamir, P. (1999). Growth patterns in students’ ability to supply scientific explanations: findings from the Third International Mathematics and Science Study in Israel. International Journal of Science Education , 21 (10), 1101-1121. https://doi.org/10.1080/095006999290219