Analysis of the factorial structure of the bebras 2021 challenge in uruguay and preliminary results
Main Article Content
Abstract
Nowadays, technologyis part of most personal dailyactivities. In theeducational field,specifically, technological tools are used as facilitators of learning. This, along with the need to provide diverse tools to educate students, has generated a change in the educational paradigm, moving from content-based education to competency-based education. Therefore, the concept of Computational Thinking (CT) has begun to gain international relevance. Computational Thinking refers to the set of competencies for problem expression and solving using programming logic. In the educational field, the acquisition of these competencies will enable children to face an increasing lytechnological future. To assess the level of acquisition of thesecompetencies,validated measurement instruments are needed. This research aims to verify the theoretical structure of the Bebras Challenge applied in Uruguay during 2021 and to conducta preliminaryanalysis of thesituation. For this purpose, Confirmatory Factor Analysis, Student’s T-tests, and ANOVAs were applied to the responses of 20,393 participants in the Bebras Challenge from 5th and 6th grades of Public Education. The main results obtained are: the factorial structure coincides with the theoretical definition of each item. There are statistically significant differences by gender (p-value< .05), grade (p-value < .01), and sociocultural level (F(5, 2730) = 42; p-value < .00). It can be concluded that the factorial structure contradicts research that claims that Bebras does not have the theoretical factorial structure and that the results of the factor analysis are consistent with research analyzing both gender and sociocultural performance differences.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
References
Araujo, A. L. S. O., Andrade, W. L., Guerrero, D. D. S., & Melo, M. R. A. (2019). How Many Abilities Can We Measure in Computational Thinking?: A Study on Bebras Challenge. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 545-551. https://doi.org/10.1145/3287324.3287405
Balanskat, A., & Hengelhard, K. (2015). Computing our future: Computer programming and coding. Priorities, school curricula and initiatives across Europe. European Schoolnet.
Brown, T. A. (2015). Confirmatory factor analysis for applied research (Second edition). The Guilford Press.
Cárcamo, C., Moreno, A., & del Barrio, C. (2020). Diferencias de género en matemáticas y lengua: Rendimiento académico, autoconcepto y expectativas. Suma Psicológica, 27(1). https://doi.org/10.14349/sumapsi.2020.v27.n1.4
Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., & Tosto, C. (2019). Educational Robotics in Primary School: Measuring the Development of Computational Thinking Skills with the Bebras Tasks. INFORMATICS-BASEL, 6(4). https://doi.org/10.3390/informatics6040043
Cobo, C. (2016). Experiencias evaluativas de tecnologías digitales en la educación. 8.
Cobo, C., & Montaldo, M. (2018). Plan Ceibal in Uruguay: How do you educate in learning to decode the unknown. 16.
Computational Thinking Operational Definition ISTE. (2011). https://cdn.iste.org/wwwroot/Computational_Thinking_Operational_Definition_ISTE.pdf
Dagien , V., & Sentance, S. (2016). It’s Computational Thinking! Bebras Tasks in the Curriculum. En A. Brodnik & F. Tort (Eds.), Informatics in Schools: Improvement of Informatics Knowledge and Perception (Vol. 9973, pp. 28-39). Springer International Publishing. https://doi.org/10.1007/978-3-319-46747-4_3
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438
Echevarria, M., Godoy, J. C., & Olaz, F. (2007). Gender differences in cognitive skills and academic performance in college students. Universitas Psychologica, 6(2), 319-329.
Formichella, M. M., & Alderete, M. V. (2018). TIC en la escuela y rendimiento educativo: El efecto mediador del uso de las TIC en el hogar. Cuadernos de Investigación Educativa, 9(1), 75-93. https://doi.org/10.18861/cied.2018.9.1.2822
Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). IEA International Computer and Information Literacy Study 2018 Assessment Framework. Springer International Publishing. https://doi.org/10.1007/978-3-030-19389-8
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The Science of Sex Differences in Science and Mathematics. Psychological Science in the Public Interest, 8(1), 1-51. https://doi.org/10.1111/j.1529-1006.2007.00032.x
Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., Pal, Y., Jackova, J., & Jasute, E. (2015). A Global Snapshot of Computer Science Education in K-12 Schools. Proceedings of the 2015 ITiCSE on Working Group Reports, 65-83. https://doi.org/10.1145/2858796.2858799
Huise, S. L. (2015). La resolución de problemas matemáticos en el contexto de los proyectos de aprendizaje. 39, 24.
Hyde, J. S. (2014). Gender Similarities and Differences. Annual Review of Psychology, 65(1), 373-398. https://doi.org/10.1146/annurev-psych-010213-115057 JASP TEAM. (2022). JASP (Version 0.16.1). K–12 Computer Science Framework. (2016). https://www.k12cs.org
Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (Fourth edition). The Guilford Press.
Koleszar, V., Clavijo, D., Pereiro, E., & Urruticoechea, A. (2021). Análisis preliminares de los resultados del desafío BEBRAS 2020 en Uruguay. Revista INFAD de Psicología. International Journal of Developmental and Educational Psychology., 1(2), 17-24. https://doi.org/10.17060/ijodaep.2021.n2.v1.2153
Kong, S.-C., & Abelson, H. (Eds.). (2019). Computational Thinking Education. Springer Singapore. https://doi.org/10.1007/978-981-13-6528-7
Lin, S. -Y., Chien, S. -Y., Hsiao, C. -L., Hsia, C. -H., & Chao, K. -M. (2020). Enhancing Computational Thinking Capability of Preschool Children by Game-based Smart Toys. ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 44. https://doi.org/10.1016/j.elerap.2020.101011
Lizitza, N., & Sheepshanks, V. (2020). Educación por competencias: Cambio de paradigma del modelo de enseñanza-aprendizaje. RAES, 12(20), 89-107.
Loh, C. E., Sun, B., & Majid, S. (2020). Do girls read differently from boys? Adolescents and their gendered reading habits and preferences. English in Education, 54(2), 174-190. https://doi.org/10.1080/04250494.2019.1610328
Mason, J., Burton, L., & Stacey, K. (1989). Pensar matemáticamente. Labor. https://books.google.com.ec/books?id=XmGENAAACAAJ
Meinck, S., & Brese, F. (2019). Trends in gender gaps: Using 20 years of evidence from TIMSS. Large-Scale Assessments in Education, 7(1), 8. https://doi.org/10.1186/s40536-019-0076-3
Merino-Armero, J. M., González-Calero, J. A., & Cózar-Gutiérrez, R. (2020). Computational thinking in K-12 education. An insight through meta-analysis. Journal of Research on Technology in Education, 1-26. Academic Search Complete.
Mühling, A., Ruf, A., & Hubwieser, P. (2015). Design and First Results of a Psychometric Test for Measuring Basic Programming Abilities. Proceedings of the Workshop in Primary and Secondary Computing Education, 2-10. https://doi.org/10.1145/2818314.2818320
Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C. -H. (2020). Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages. Scientific Reports, 10(1), 3817. https://doi.org/10.1038/s41598-020-60661-8
Román-Gonzalez, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2015). Test de Pensamiento Computacional: Diseño y psicometría general. 7.
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2). https://doi.org/10.18637/jss.v048.i02
Scherer, R., & Siddiq, F. (2019). The relation between students’ socioeconomic status and ICT literacy: Findings from a meta-analysis. Computers & Education, 138, 13-32. https://doi.org/10.1016/j.compedu.2019.04.011
Senkbeil, M., Ihme, J. M., & Wittwer, J. (2013). The Test of Technological and Information Literacy (TILT) in the National Educational Panel Study: Development, empirical testing, and evidence for validity. https://doi.org/10.25656/01:8428
Sullivan, A., & Umaschi Bers, M. (2016). Girls, Boys, and Bots: Gender Differences in Young Children’s Performance on Robotics and Programming Tasks. Journal of Information Technology Education: Innovations in Practice, 15, 145-165. https://doi.org/10.28945/3547
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Winters, T., & Payne, T. (2005). What do students know?: An outcomes-based assessment system. Proceedings of the 2005 International Workshop on Computing Education Research - ICER ’05, 165-172. https://doi.org/10.1145/1089786.1089802
Zhu, Z. (2007). Gender differences in mathematical problem solving patterns: A review of literature. 17.