Does familiarity with tics influence performance in mathematics and science? The case of Spain
Main Article Content
Abstract
This paper analyzes, for the case of Spain, the influence of ICT familiarization on the acquisition of mathematicsand science competencies. The analyzed participants correspond to 35943 15-year-old students who took the PISA test in 2018. The data are analyzed through a Multiple Correspondence Analysis and the main results allow us to conclude that, in terms of familiarization (possession and/or use) with ICT, more than 50% of the students declare having and using the analyzed devices, and that this proportion is even higher when it comes to Internet and Cellular with Internet (more than 95%). The devices with the least use are Cellular without internet and ebook reader. Regarding the association between familiarity with ICTs and the acquisition of competencies, the following results are obtained: 1. low levels of competencies are associated with no familiarity with ICTs; 2. medium levels are associated with having/using the Internet, Laptop, Cell phone with Internet and USB disk; and 3. high levels areas sociated with having and using a Computer, Tabletand Printer, in addition to the devicesas sociated with the medium level.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
References
Antonijevi, R. (2007). Usage ofcomputersand caculatorsand student sachievement: Resultsfroma TIMSS 2003. 11.
Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe. European Schoolnet. https://cupdf.com/document/the-ict-impact-report-commonwealth-of-the-ict-impact-report-a-review-of-studies.html
Ben Youssef, A., Dahmani, M., & Omrani, N. (2015). Information technologies, students’ e-skills and diversity of learning process. Education and Information Technologies, 20(1), 141-159. https://doi.org/10.1007/s10639-013-9272-x
Benzecri, J.-P. (1992). Correspondence Analysis Handbook. New York: Marcel Dekker, ISBN: 0-8247-8437-5 Boletín oficial del Estado (BOE), 189, C 019/20-SP 50047 (2020). https://www.boe.es/boe/dias/2020/07/10/pdfs/BOE-A-2020-7682.pdf
Cotik, V., & Monteverde, H. (2016). Evolución de la enseñanza de la informática y las TIC en la Escuela Media en Argentina en los últimos 35 años. Virtualidad, Educación y Ciencia, 7(12), 11-33.
Formichella, M. M., & Alderete, M. V. (2018). TIC en la escuela y rendimiento educativo: El efecto mediador del uso de las TIC en el hogar. Cuadernos de Investigación Educativa, 9(1), 75-93. https://doi.org/10.18861/cied.2018.9.1.2822
Formichella, M. M., & Alderete, M. V. (2020). El efecto de las TIC en el desempeño educativo: El análisis de la comprensión lectora: THE. Semestre Económico, 23(54), 181-199. https://doi.org/10.22395/seec.v23n54a9
García-Martín, S., & Cantón-Mayo, I. (2019). Use of technologies and academic performance in adolescent students. Comunicar, 27(59), 73-81. https://doi.org/10.3916/C59-2019-07
Greenacre, M. (2009). Power transformations in correspondence analysis. Computational Statistics & Data Analysis, 53(8), 3107-3116. https://doi.org/10.1016/j.csda.2008.09.001
Greenacre, M. (2017). Correspondence analysis in practice (Third edition). CRC Press, Taylor & Francis Group.
Greenacre, M., & Blasius, J. (2006). Multiple correspondence analysis and related methods. Chapman & Hall/CRC.
Hamburg, I., & Lütgen, G. (2019). Digital Divide, Digital Inclusion and Inclusive Education. Advances in Social Sciences Research Journal, 6(4), 193-206. https://doi.org/10.14738/assrj.64.6457
Junco, R. (2015). Student class standing, Facebook use, and academic performance. Journal of Applied Developmental Psychology, 36, 18-29. https://doi.org/10.1016/j.appdev.2014.11.001
Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra
Le, S., Josse, J., Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1-18. 10.18637/jss.v025.i01
Lepp, A., Barkley, J. E., & Karpinski, A. C. (2015). The Relationship Between Cell Phone Use and Academic Performance in a Sample of U.S. College Students. SAGE Open, 5(1), 2158244015573169. https://doi.org/10.1177/2158244015573169
Noshahr, R. B., Talebi, B., & Mojallal, M. (2014). The Relationship Between Use of Cell-Phone with Academic achievement in female Students. Applied Mathematics in Engineering, Management and Technology, 2, 5.
OECD. (2020). PISA 2018 Results (Volume VI): Are Students Ready to Thrive in an Interconnected World? OECD.
https://doi.org/10.1787/d5f68679-en
Orozco Torres, L. M., López Cortés, E., & Torres Santiago, G. J. (2019). El uso de las tecnologías de la información en estudiantes de nivel bachillerato de comunidades en desarrollo / The Use of Information Technologies in High School Students at Developing Communities. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 9(18), 392-411. https://doi.org/10.23913/ride.v9i18.429
Plan Ceibal. (2007). Plan Ceibal—Sobre Nosotros. https://www.ceibal.edu.uy/es/institucional
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Spiezia, V. (2010). Does Computer Use Increase Educational Achievements? Student-level Evidence from PISA. OECD Journal: Economic Studies, 2010(1), 1-22. https://doi.org/10.1787/eco_studies-2010-5km33scwlvkf
Torres-Díaz, J. -C., Duart, J. -M., Gómez-Alvarado, H. -F., Marín-Gutiérrez, I., & Segarra-Faggioni, V. (2016). Internet use and academic success in university students. Comunicar, 24(48), 61-70. https://doi.org/10.3916/c48-2016-06
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Wickham, H., François, R., Henry, L., Müller, K. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.8. https://CRAN.R-project.org/package=dplyr
Wittwer, J., & Senkbeil, M. (2008). Is students’ computer use at home related to their mathematical performance at school? Computers & Education, 50(4), 1558-1571. https://doi.org/10.1016/j.compedu.2007.03.001