Estimation in the numerical line and written and mental calculation in pupils of 4th and 5th of primary education
Main Article Content
Abstract
Downloads
Article Details
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
References
Bell, N. & Tuley, K. (2003). Imagery: The sensory-cognitive connection for math. [en línea, consultado el 30 abril 2009] http://www.ldonline.org/article/5647
Bobis, J. (2007). The empty number line: a useful tool or just another procedure? Teaching Children Mathematics, 13(8), 410-413.
Bobis, J. (2008). Early spatial thinking and the development of number sense. Australian Primary Mathematics Classroom, 13, 4–9.
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology,41, 189–201.
Bruno, A. & Cabrera, N. (2005). Una mirada a la recta numérica en los libros de texto de tres editoriales españolas. Formación del Profesorado e Investigación en Educación Matemática, 7, 33-56.
Bruno, A. & Cabrera, N. (2006). Types of representations of the number line text books. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education. Volume 2. Prague: Czech Republic.
Clarke, D. M., Downton, A. & Roche, A. (2011). Learn a simple game to support your students’ mathematical learning across a range of content areas. Teaching Children Mathematics, 17(6), 342-349.
de Hevia, M.D., & Spelke, E.S. (2010). Number-space mapping in human infants. Psychological Science, 21, 653-660.
Dehaene, S. (1997). The number sense. New York: Oxford University Press.
Dehaene, S. (2001). Precis of “the number sense”. Mind and Language, 16, 16–32.
Diezmann, C. M. & Lowrie, T. (2006). Primary Students’ Knowledge of and Errors on Number Lines. In Identities, Cultures, and Learning Spaces: Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia (MERGA), pp. 171–78. Adelaide, Australia: Merga.
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277-299.
Gervasoni, A. (2005). Opening Doors to Successful Learning for Those Who Are Vulnerable.” In Judy Mousley, Leicha Bragg, & Coral Campbell (Eds). Mathematics:Celebrating Achievement: Proceedings of the 42nd Annual Conference of the Mathematics Association of Victoria (MAV), (pp. 125–36). Brunswick, Victoria: MAV.
Griffin, S., Case, R., & Siegler, R. S. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 25-49). Cambridge, MA: MIT Press.
Griffin, S. A. & Case, R. (1996). Evaluating the breadth and depth of training effects when central conceptual structures are taught. En R. Case & Okamoto (Eds.). The role of central structures in the development of children’s thought (pp. 83-102). Monographs of the Society for Research in Child Development, 61, serial, 246, 1-2.
Ineson, E. (2008). The mental mathematics of trainee teachers in the UK: Patterns and preferences. The mathematics educator, 11, 1/2, 127-142.
LeFevre, J. A., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11, 95–132.
Newcombe, N. S. (2002). The nativist-empiricist controversy in the context of recent research on spatial and quantitative development. Psychological Science, 13, 395–401.
Opfer, J., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55, 169– 195.
Petitto, A. L. (1990). Development of numberline and measurement concepts. Cognition and Instruction, 7, 55–78.
Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375– 394.
Ramani, G.B., Siegler, R.S. & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104 (3), 661-672.
Reinert, R.M., Huber, S., Nuerk, H.-C., Moeller, K. (2014). Multiplication facts and the mental number line: evidence from unbounded number line estimation (2014) Psychological Research, pp. 1-9. (in press).
Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101(2), 359-372. doi:10.1037/a0013840
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.
Siegler, R. S., & Booth, J. L. (2005). Development of numerical estimation: A review. In j. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 197212) New York: Psychology Press.
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.
Siegler, R. S., & Ramani, G. B. (2008). Playing board games promotes low-income children’s numerical development. Developmental Science, 11, 655–661.