La comprensión conceptual aritmética en la escuela elemental
##plugins.themes.bootstrap3.article.main##
Resumo
Este estudio analizó la comprensión conceptual aritmética desde una doble vía, (conceptual y estratégica) del alumnado escolarizado en 4º, 5º y 6º de Educación Primaria, seleccionado en base a tres grupos de logro: dificultades de aprendizaje en matemáticas (DAM; n=51), competencia normal (CN; n=60) y alto rendimiento (AR; n=21). Concretamente, pretendió (1) caracterizar al alumnado en base a su conocimiento conceptual aritmético y (2) analizar cómo los distintos grupos de logro afrontan tareas más complejas en base a sus habilidades conceptuales previas. Se utilizó la batería BANEVHAR para evaluar la comprensión conceptual y la escala completa de la batería CAS como estimador fiable de inteligencia. Los resultados señalaron los déficits conceptuales del alumnado con DAM respecto a sus iguales de CN y AR que parecen llegar a estos niveles educativos con las habilidades conceptuales adquiridas. Además, se observó que existen diferencias entre los tres grupos en el afrontamiento estratégico de las tareas cuando estas son novedosas o complejas. En este contexto, el alumnado con AR es capaz de resolver las tareas de forma más eficiente. Estos hallazgos resaltan la importancia de la enseñanza conceptual y estratégica de la aritmética y sugieren su implementación práctica en la escuela.
Downloads
##plugins.themes.bootstrap3.article.details##
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros copiar y redistribuir el material en cualquier medio o formato bajo los siguientes términos: —se debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante (Atribución); — no se puede hacer uso del material con propósitos comerciales (No Comercial); — si se remezcla, transforma o crea a partir del material, no podrá distribuirse el material modificado (Sin Derivadas).
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Referências
Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. En A. J. Baroody y A. Dowker (Ed.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). Erlbaum.
Baroody, A. J. (2006). Why children have difficulty mastering the basic number combinations and how to help them. Teaching Children Mathematics, 13(1), 22- 31.
Baroody, A. J., y Snyder, P. (1983). A cognitive analysis of basic arithmetic abilities of TMR children. Education and Training of the Mentally Retarded, 18(4), 253-259. Canobi, K. H. (2004). Individual differences in children’s addition and subtraction knowledge. Cognitive Development, 19(1), 81–93. https://doi.org/10.1016/j.cogdev.2003.10.001
Cowan, R., Donlan, C., Shepherd, D.-L., Cole-Fletcher, R., Saxton, M., y Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103(4), 786–803. http://dx.doi.org/10.1037/a0024556
Crooks, N. M., y Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34 (4), 344-377. http://dx.doi.org/10.1016/j.dr.2014-10-001
Deaño, M. (2005). D.N: CAS (Das-Naglieri: Sistema de Evaluación Cognitiva) Adaptación Española. Gersam.
Dowker, A. (2003). Young children’s estimates for addition: The zone of partial knowledge and understanding. En A. J. Baroody (Ed.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 243–265). Erlbaum. Dowker, A. D. (2005). Individual differences in arithmetic. Implications for Psychology, Neuroscience and Education. Psychology Press.
Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: A five year longitudinal study. Developmental Psychology, 47(6), 1539-1552. http://dx.doi.org/10.1037/a0025510
Geary, D. C., Bow-Thomas, C. C., y Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54(3), 372–391. https://doi.org/10.1016/0022-0965(92)90026-3
Geary, D. C., Hoard, M. K., Byrd-Craven, J., y Catherine DeSoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151. https://doi.org/10.1016/j.jecp.2004.03.002
Gilmore, C. K., y Bryant, P. (2006). Individual differences in children’s understanding of inversion and arithmetical skill. The British Journal of Educational Psychology, 76(2), 309-331. https://doi.org/10.1348/000709905X39125
Gilmore, C., Keeble, S., Richardon, S., y Cragg, L. (2017). The interaction ofprocedural skill, conceptual understanding and working memory in early mathematics achievement. Journal of Numerical Cognition, 3(2), 400-416. https://doi.org/10.5964/jnc.v3i2.51
Gilmore, C. K., y Papadatou-Pastou, M. (2009). Patterns of individual differences in conceptual understanding and arithmetical skill: A meta-analysis. Mathematical Thinking and Learning, 11(1-2), 25-40. http://dx.doi.org/10.1080/10986060802583923
Hanich, L. B., Jordan, N. C., Kaplan, D., y Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of Educational Psychology, 93(3), 615–626. https://doi.org/10.1037/0022-0663.93.3.615
Iglesias-Sarmiento, V. (2009). Dificultades de aprendizaje en el dominio aritmético y en el procesamiento cognitivo subyacente [Learning difficulties in the mastery of arithmetic and in the underlying cognitive processing]. (Doctoral dissertation). Available from ProQuest database. (UMI No. AAT 3386296)
Iglesias-Sarmiento, V., Alfonso, S., Conde, A., Pérez, L., y Deaño, M. (2020).Mathematical difficulties vs. high achievement: An analysis of arithmetical cognition in elementary school. Developmental Neuropsychology, 45(2), 49-65. https://doi.org/10.1080/87565641.2020.1726920
International Association for the Evaluation of Educational Achievement (IEA, 2016). TIMMS 2015. Student achievement. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.
Jordan, N. C., Hanich, L. B., y Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103-119. https://doi.org/10.1016/S0022-0965(03)00032-8
Jordan, N. C., Huttenlocher, J., y Levine, S. C. (1994). Assessing early arithmetic abilities: Effects of verbal and nonverbal response types on the calculation performance of middle-and low-income children. Learning and Individual Differences, 6(4), 413–432. https://doi.org/10.1016/1041-6080(94)90003-5
Jordan, J.-A., Mulhern, G., y Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5- to 7-year-olds. Journal of Experimental Child Psychology, 103(4), 455–468. https://doi.org/10.1016/j.jecp.2009.01.011
LeFevre, J.- A., Greenham, S. L., y Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11(2), 95–132. http://dx.doi.org/10.1207/s1532690xci1102_1
Lemaire, P., y Lecacheur, M. (2002). Children’s strategies in computational estimation. Journal of Experimental Child Psychology, 82(4), 281–304. https://doi.org/10.1016/S0022-0965(02)00107-8
Mabbott, D. J., y Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15-28. https://doi.org/10.1177/0022219407311003
Macaruso, P., y Sokol S. M. (1998). Cognitive neuropsychology and developmental dyscalculia. En C. Donlan (Ed.), The development of mathematical skills (pp. 201- 205). Psychology Press.
Nunes, T., Bryant, P., Evans, D., Bell, D., Gardner, S., Gardner, A., y Carraher, J. (2007). The contribution of logical reasoning to the learning of mathematics in primary school. British Journal of Developmental Psychology, 25(1), 147– 166. https://doi.org/10.1348/026151006X153127
Ploger, D., y Hecht, S. (2009). Enhancing children’s conceptual understanding of mathematics through Chartworld software. Journal of Research in Childhood Education, 23(3), 267–277. https://doi.org/10.1080/02568540909594660
Sherman, J., y Bisanz, J. (2007). Evidence for use of mathematical inversion by three- year-old children. Journal of Cognition and Development, 8(3), 333–344. https://doi.org/10.1080/15248370701446798
Siegler, R. S., y Booth, J. L. (2005). Development of numerical estimation: A review. En J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 197–212). Psychology Press.
Star, J. R., Rittle-Johnson, B., Lynch, K., y Perova, N. (2009). The role of prior knowledge in the development of strategy flexibility: the case of computational estimation. Mathematics Education, 41 (5), 569-579. http://dx.doi.org/10.1007/s11858-009-0181-9