Influence of early numeracy skills on later performance

Main Article Content

Jessica Mercader Ruiz
Mª Jesús Presentación Herrero
Rebeca Siegenthaler Hierro

Abstract

The objective of this longitudinal study was to examine the predictive value of early numeracy skills of counting, logical operations and magnitude comparison abilities evaluated in Kindergarten on the formal and informal aspects of mathematical performance in 2nd grade of Primary School. The initial sample consisted of 209 preschoolers aged 5 to 6 years, 180 of whom were retested two years later. In Kindergarten, different tasks of the TEDI-MATH battery (Grégoire, Noël, and Van Nieuwenhoven, 2005) were applied, which evaluate counting skills (procedural and conceptual), logical operations (seriation, classification, conservation and inclusion) and magnitudes comparison abilities (symbolic and non-symbolic). Two years later, the TEMA-3 test (Gingsburg and Baroody, 2003) was administered to assess different aspects related to mathematical performance. The results showed that 5 of the 8 tasks applied in Kindergarten are able to predict the subsequent mathematical performance, with a special weight of the ability to manage verbal numerical sequence (procedural counting). The implications of these findings for psychoeducational research and practice are discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mercader Ruiz, J., Presentación Herrero, M. J., & Siegenthaler Hierro, R. (2017). Influence of early numeracy skills on later performance. International Journal of Developmental and Educational Psychology. Revista INFAD De Psicología., 3(1), 243–252. https://doi.org/10.17060/ijodaep.2017.n1.v3.993
Section
Articles

References

Aunio, P., y Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy skills. Learning and Individual Differences, 20, 427-435.

Aunola, K., Leskinen, E., Lerkkanen, M.K., y Nurmi, J.E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96(4), 699-713.

Cathcart, W.G. (1971). The relationship between primary students’ rationalization of conservation and their mathematical achievement. Child Development, 42(3), 755-765.

De Smedt, B., Noël, M. P., Gilmore, C., y Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55.

De Smedt, B., Verschaffel, L., y Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469-479.

Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York (NY): Oxford University Press.

Desoete, A., Stock, P., Schepens, A., Baeyens, D., y Roeyers, H. (2009). Classification, seriation, and counting in grades 1, 2, and 3 as two-year longitudinal predictors for low achieving in numerical facility and arithmetical achievement? Journal of Psychoeducational Assessment, 27(3), 252-264.

Desoete, A., y Grégoire, J. (2006). Numerical competence in young children and in children with mathematics learning disabilities. Learning and Individual Differences, 16(4), 351-367.

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of learning disabilities, 37(1), 4-15.

Geary, D.C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics: JDBP, 32(3), 250-263.

Geary, D.C., Hoard, M.K., Nugent, L., y Bailey, D.H. (2013). Adolescents’ functional numeracy is predicted by their school entry number system knowledge. PloS one, 8(1), e54651.

Gelman, R., Meck, E., y Merkin, S. (1986). Young children’s numerical competence. Cognitive Development, 1, 1-29.

Ginsburg, H. y Baroody, A. (2003). TEMA-3; Test de Competencia Matemática Básica. Madrid: TEA Ediciones.

Ginsburg, H.P., Greenes, C., y Balfanz, R. (2003). Big Math for Little Kids. Parsippany, NJ: Dale Seymour Publications.

Grégoire, J. (2005). Logical development and arithmetic competency: Is the Piagetan model always current? En Crahay, M., Verschaffel, L., y Grégoire, J. (Eds.), Enseignement et appretissage des mathématiques (pp. 57-77). Bruxelles, Bélgice: De Boeck.

Grégoire, J., Nöel, M., y Van Nieuwenhoven, C. (2005). TEDI-MATH; Test para el Diagnostico de las Competencias Básicas en Matemáticas. Madrid: TEA Ediciones.

Holloway, I. D., y Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29.

IBM Corp. Released (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Jordan, N.C., Kaplan, D., Ramineni, C., y Locuniak, M.N. (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850-867.

Koponen, T., Salmi, P., Eklund, K., y Aro, T. (2013). Counting and RAN: Predictors of arithmetic calculation and reading fluency. Journal of Educational Psychology, 105(1), 162-175.

Libertus, M.E., Feigenson, L., y Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829-838.

Mazzocco, M.M., Feigenson, L., y Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS one, 6(9), e23749.

Mullis, I.V.S., Martin, M.O., Foy, P., y Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Recuperado de: http://timssandpirls.bc.edu/timss2015/ international-results/

Östergren, R., y Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405-421.

Piaget, J., y Szeminska, A. (1941). La genèse du nombre chez l’enfant. Neuchâtel: Delanchaux et Niestlé.

Sasanguie, D., Göbel, S.M., Moll, K., Smets, K., y Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418-431.

Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., y De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 1-16. doi: 10.1111/desc.12372

Spreen, O., y Strauss, E. (1991). A compendium of neuropsychological tests: administration, norms, and commentary. New York: Oxford University Press.

Steffe, L. (1971). The realtionship between conservation of numerousness to problem solving ability in first grade children. Journal of Research in Mathematics Education, 15(1), 47-52.

Stock, P., Desoete, A., y Roeyers, H. (2007). Early markers for arithmetic difficulties. Educational and Child Psychology, 24, 28-39.

Stock, P., Desoete, A., y Roeyers, H. (2009). Predicting arithmetic abilities: The role of preparatory arithmetic markers and intelligence. Journal of Psychoeducational Assessment, 27(3), 237-251.

Tobia, V., Bonifacci, P., y Marzocchi, G.M. (2016). Concurrent and longitudinal predictors of calculation skills in preschoolers. European Journal of Psychology of Education, 31(2), 155-174.

Wechsler, D. (1981). Escala de Inteligencia de Wechsler para Preescolar y Primaria. Madrid: TEA Ediciones.